NASA TECHNICAL NOTE

NASA TN D-6712

OPTIMIZED SOLUTION
OF KEPLER’S EQUATION

by _]olm M. Kohout and Lamar Layton

Goddard Space Flight Center
Greenbelt, Md. 20771

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

« WASHINGTON, D. C. -

IR AR A

WN ‘84v) AHVHEIT HOaL

MAY 1972

—
.

~.’
I

12.

15.

16.

17. 'Key Words (Selected by Author(s))

19. Security Classif. (of this report)

. Report No. 2. Government Accession No.

NASA TN D-6T712

. Title and Subtitle

Optimized Solution of Kepler’s Equation

. Author(s)

John M. Kohout and Lamar Layton

. Performing Organization Nome and Address

Goddard Space Flight Center
Greenbelt, Maryland 20771

3.

5.

TECH LIBRARY KAFB, NM

0133376

Recipient's Catalog No.

Report Date

May 1972

6.

10.

Performing Organization Code

Performing Organization Report No.

G-1066

Work Unit No.A

Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, D. C. 20546

Supplementary Notes

Abstract

This document presents a detailed description of KEPLER, an IBM 360
computer program used for the solution of Kepler’s equation for eccentric anomaly.
KEPLER employs a second-order Newton-Raphson differential correction process,
and it is faster than previously developed programs by an order of magnitude.

Kepler’s Equation
KEPLER (DODS)
KEPLR1(DODS)

Unclassified Unclassified

20. Security Classif. (of this poge)ﬁ

. Contract or Grant No.

. Type of Report and Period Covered

. Sponsoring Agency Code

Technical Note

18. Distribution Statement

Unclassified—Unlimited

21. No. of Pages |22, Price
38 $3.00

-
For sale by the National Technical Information Service, Springfield, Virginia 22151

CONTENTS

Abstract .

1.0

2.0

3.0

4.0

5.0

INTRODUCTION

1.1
1.2
1.3

General Description of KEPLER .
KEPLER and KEPLRI1 .
Outline of Remainder of This Document .

A COMPARISON OF KEPLER AND KEPLRI1

2.1
2.2
2.3
2.4
2.5

KEPLER-MODULE PERFORMANCE AND DESIGN DESCRIPTION .

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Accuracy of KEPLER .

Execution Times .

Core Requirements .

Reentrancy of KEPLER . ..
Optimal Execution Times for KEPLER

Language .

Module Size . .

Purpose of KEPLER

Linkage Information

Functional Analysis .

Restrictions and Limitations .
Storage Tables External to KEPLER
Input/Output Device Requirements .
Error Conditions and Recovery

3.10 Module Design Technique
3.11 Test Procedures and Results

SECOND-ORDER NEWTON-RAPHSON METHOD

CONCLUSIONS AND RECOMMENDATIONS

5.1
5.2
5.3
5.4

Effect of KEPLER on DODS Performance .

Effect of the DPSC Module on KEPLER .

Effect of DPSC on DODS e e e e e
Recommended Use of Simultaneous Sine/Cosine Routine .

iii

Page

N — p— [e— s

W W W N NN

O O O 00 00 ® Hh b B~ W W W

11

11
11
11
11

5.5 Recommended Use of ALC Entry Points in DPSC .

5.6 Expansion of the DPSC Module .

5.7 Element Conversion Module
ACKNOWLEDGMENT

Reference

Appendix A—Definitive Orbit Determination System—Model 1 (Module Performance and Design)

Appendix B—Test 1 and Results .
Appendix C—Test 2 and Results .
Appendix D-KEPLR1/KEPLER Source Code

iv

Page

11
12
12

13
13
15
25
27
29

OPTIMIZED SOLUTION OF KEPLER'S EQUATION

by
John M. Kohout and Lamar Layton
Goddard Space Flight Center

1.0 INTRODUCTION
1.1 General Description of KEPLER

KEPLER is an IBM 360 computer program used to solve Kepler’s equation for eccentric anomaly:
E=M+esink.

The double precision input to the program consists of mean anomaly M (in radians) and eccentric-
ity of the orbit e. The double precision output from program consists of eccentric anomaly E (in
radians), sin £, and cos E.

1.2 KEPLER and KEPLR1

KEPLER has been developed by the authors as a replacement for KEPLR1, a similar program con-
tained in the definitive orbit determination system (DODS) used at Goddard Space Flight Center to
determine orbits for NASA’s scientific satellites. KEPLR1 was not a hastily coded and formulated
program designed for early replacement as soon as DODS became operational. On the contrary,
KEPLR1 was developed after a rather extensive research effort that recommended a particular algo-
rithm, the Myles Standish algorithm.* This algorithm was then implemented by Federal Systems
Division of IBM under contract to GSFC (see Appendix A). KEPLR1 has been in productive use since
May 1968.

KEPLER was developed as a part of an effort to optimize the execution times of frequently
called subprograms in DODS. The initial thought was simply to recode KEPLR1 in assembly language
coding (ALC), since, like most other programs in DODS, KEPLR1 was coded in FORTRAN, and
previous experience with other programs in DODS led the authors to anticipate a 20 to 30 percent
speed improvement from a FORTRAN-to-ALC recoding. However, a little analysis of the formulation
used in KEPLR1 led the authors to believe that a new analytic approach to the age-old problem was

*Cole, Isabella, and Borchers, Raymond V., “A Comparison of Some Iterative Techniques for the Solution of Kepler’s Equation™,
NASA/GSFC Document X-552-67-421, September 1967.

in order. As a result, they engaged in a research effort of their own* and developed a completely new
computer program, KEPLER.

KEPLER not only solves Kepler’s equation for eccentric anomaly but also outputs accurate values
for the sine and cosine of the eccentric anomaly. This is important since in almost every case for which
DODS calls on KEPLRI1 to solve Kepler’s equation for E, it then uses £ as the input argument to the
DSIN(X) and DCOS(X) functions. These function calls are unnecessary when KEPLER is used since

sin E and cos E are part of its output.

1.3 Outline of Remainder of This Document

Section 2 of this document is a description of the relative performance of KEPLER versus that of
KEPLR1. Section 3 is a detailed design and performance description of the newly developed program,
KEPLER. Section 4 presents the mathematical derivation of the principal formulas used in KEPLER,
namely the second-order Newton-Raphson differential correction of eccentric anomaly. Section 5
summarizes the significance of the use of KEPLER and its called module in DODS, DPSC (double
precision sine/cosine), and recommends the development of related programs.

Appendix A is a module performance and design description of KEPLRI1 prepared for GSFC by
IBM. Appendixes B and C list the test programs used to compare KEPLER with KEPLR1. Appendix
D lists KEPLR1 (in FORTRAN) and KEPLER and its called program, DPSC (in ALC).

2.0 A COMPARISON OF KEPLER AND KEPLR1

This section deals with accuracy, speed, core storage requirement, and reentrant properties of the
KEPLER program. The DODS module KEPLR1 is used as a benchmark for comparison.
2.1 Accuracy of KEPLER

Appendix B lists a test program, TEST 1, which is used to exercise both KEPLR1 and KEPLER
over a full range of the input arguments, M and e. The maximum error produced by each program
over full ranges of the arguments is obtained by substitution of the solution for eccentric anomaly
back into Kepler’s equation:

KEPLR1 error = |E — (M + e sin E)| = 0.50 X 1073
KEPLER error = |[E = (M + e sin)| = 0.44 X 10715 .

2.2 Execution Times

Appendix C lists a test program, TEST 2, which times the execution of KEPLER and KEPLRI1
on GSFC’s IBM 360/95 computer. Full ranges of e and M are used in this test. The average execution

*Kohout, J., and Layton, L., “GSFC Optimized Solution of Kepler’s Equation”, NASA/GSFC Document X-541-71-229, May 1971.

times reported are based on 400 000 test cases:
Average KEPLR1 execution time = 314 us*

Average KEPLER execution time = 74 us.

2.3 Core Requirements

KEPLR 1 requires 820 bytes of core for itself and 620 bytes of core for its called module,
[HCLSCN, the standard, release 19 FORTRAN library (FORTLIB) double precision sine/cosine rou-
tine. KEPLER requires 440 bytes of core for itself and 2360 bytes of core for its called module,

DPSC.

2.4 Reentrancy of KEPLER

Both KEPLER and its called module, DPSC, are reentrant and, therefore, are candidates for the
high-speed system link pack area. Neither KEPLRI nor its called module are reentrant. Therefore,
they may not be stored in the high-speed system link pack area.

2.5 Optimal Execution Times for KEPLER

The favorable ratio of exccution times reported in Section 2.2 (KEPLR1/KEPLER = 314/74 =
4.24) will be enhanced by factors of 2, 3, and 4, on the IBM 360/95, 360/75, and 360/65, respectively,
when KEPLER and DPSC are located in the high-speed system link pack area and KEPLR1 and its
called module are located in low-speed core. Under these optimal conditions, the execution fime ratios
would be 8.48, 12.72, and 16.96, respectively.

Furthermore, when KEPLER and DPSC are located in the system link pack area, several concur-
rent jobs could be calling on KEPLER, and only one copy of KEPLER would be in core. (The core
storage requirement of KEPLER would be charged to system overhead and not to a particular job.)

3.0 KEPLER—MODULE PERFORMANCE AND DESIGN DESCRIPTION
3.1 Language

KEPLER is written in ALC in order to reduce both execution time and core storage. The core
storage savings are incidental; the main reason for the use of ALC is to produce a faster executing
program. It is estimated that the use of ALC for KEPLER is responsible for about one-third of the
improvement in execution time when that program is used in place of KEPLRI1.

3.2 Module Size

KEPLER requires 440 bytes of core storage.

*This figure includes the time required to calculate sin £ and cos E. Without these calculations, the average execution time for
KEPLRI1 is 266 us.

3.3 Purpose of KEPLER

KEPLER solves Kepler’s equation for eccentric anomaly when mean anomaly and eccentricity
are known. The sine and cosine of eccentric anomaly are output by this module.

3.4 Linkage Information
3.4.1 Calling Sequence

KEPLER is invoked via the following call statement:
CALL KEPLER(MA, ECC, IERR, OUT),

where

MA (input) = M, mean anomaly (in radians);
ECC (input) =g, eccentricity;
IERR (output) = error code
=0, if no error
=], if e is negative or greater than 0.99;
OUT (output) = 3 word matrix
OUT(l) =E, eccentric anomaly
OUT(2) =sinkE
OUT((3) =coskE.

The qualities M, e, E, sin E, and cos E are double precision floating point numbers. The error code,
IERR, is a full word integer.

3.4.2 Called Modules

KEPLER calls on the reentrant DPSC module. It uses the ALC entry point, SINCOS, which in-
puts x in FRO and outputs sin x in FRO and cos x in FR2. (Note: FRO is floating point register 0 and
FR2 is floating point register 2.)

3.4.3 Calling Modules

The following modules in DODS call on KEPLER:

NEGENQ, DCCONO,
EPTRBO, CNVRTO,
ELCONQO, UNCALO.

3.5 Functional Analysis

3.5.1 Module Component 1, Main Program

3.5.1.1 Method

Kepler’s equation, £ = M + e sin E, is solved for E by use of a second-order Newton-Raphson
iterative algorithm. The derivation of this algorithm is discussed in Section 4 of this document. The
iterative algorithm is enhanced by four features of KEPLER:

(1) The mean anomaly M is reduced to a value between —7 and +m, and the resultant sign is
saved. Then, the absolute value of M is used to solve Kepler’s equation. After a solution is obtained,
E is set equal to 27 — E if the reduced value of M is negative.

(2) A highly efficient initial estimate algorithm is used to generate E’, a starting value for the
iterative process. This algorithm is discussed in Section 3.5.2.

(3) The SINCOS entry in the DPSC module is used to calculate simultaneously sin £’ and cos E’.
(4) Sum formulas are used to calculate sin (E' + C) and cos (E' + C) whenever C becomes small

enough that first- or second-order approximations of sin C and cos C are tolerable.

3.5.1.2 Main Program Algorithm

Step 1: Error exit if e is negative or greater than 0.99.
Step 2: Reduce M modulo 27 to range [-n, +7].

Save sign of M and set M = |M|.
Step 3: E’ = ESTIMATE (M, e). (See module component 2.)
Step 4: Calculate sin E' and cos E’ via SINCOS routine.
Step 5: F=M+esinE -E'. (linear correction)
Step 6: D=1-ecosE'". (first-order derivative)
Step 7: D'=D+0.5Fesin E'/D. (second-order derivative)
Step 8: C=F/D'. (second-order correction)
Step 9: E"=E +C;storeasE’ (enhanced E")

Step 10: If |C|> 1073, return to Step 4.
Step 11: If {C]|< 1078, skip to Step 13.

. . "o . r _ - 2 . ' !,
Step 12: sin E" =sin (E' +C)=(1 - 0.5C*)sin E' + C cos E'; } (second-order sums formulas)

cos E' = cos (E'+ C) = (1 - 0.5C?) cos E' ~ Csin E".
Replace sin E' with sin E"', replace cos E' with cos E",
and return to Step S.

(first-order sums formulas)

Step 13: sin E" =sin (' + C)=sin E' + Ccos E';
cosE"=cos(E'+C)=cosE'-Csin E'.

Step 14: If sign of reduced M is positive, skip to Step 16.
Step15: Setsin E'=-sinE'and E' =27 - E'.

Step 16:

Step 17:

Output E = E', sin E = sin E"’, and cos E = cos E'', with E, sin £, and cos E accurate to 15
decimal places.

Return to calling program.

3.5.1.3 Explanation of Algorithm

Step 1:
Step 2:

Step 3:

Steps 4-9:

Step 10:

Step 11:

Step 12:

Step 13:

If e is out of range, no output other than error code is generated.

The reduction of M to the range [-7, t#] and the saving of its sign have several advan-
tages: (1) it increases the precision of the calculation of the linear correction in Step 5
since M and E' will not exceed m; (2) it simplifies the estimation function (Step 3) since
M is constrained to the range [0, w]; (3) it provides a convenient test for £ being output
in the range [0, 27] (Steps 14-15).

The estimation function is treated in detail in Section 3.5.2. The purpose of this function
is to provide a sufficiently accurate initial estimate of eccentric anomaly to ensure (1)
that the differential correction process defined in Steps 4-9 converges and (2) that this
convergence takes place in a minimum number of iterations.

This sequence of steps constitutes one second-order Newton-Raphson iteration. This
algorithm is considerably more accurate than a first-order differential correction and its
use has two basic advantages: (1) it converges in fewer iterations than the first-order
correction and (2) the convergence tolerance € used to terminate the second-order dif-
ferential correction process may be larger than that for the first-order correction because
the correction is more accurate. (Other programs use a convergence tolerance of

5 X 10712 put KEPLER is able to maintain accuracy with a convergence tolerance of
1078.)

If the absolute value of the correction C, is greater than 1077, Steps 4-8 are repeated.
That is, the lengthy SINCOS routine is reexecuted in Step 4 to provide accurate values
for sin (£’ + C) and cos (E' + O).

If the absolute value of C is less than 10~8 , sufficient convergence is obtained to guaran-
tee that E is accurate to 15 significant digits. Step 12 is skipped when this condition is
met.

When the absolute value of C is between 1075 and 1078, the algorithm iterates, but the
lengthy sine/cosine calculation (Step 4) is replaced by the second-order sum formulas in
Step 12. The largest truncated term in these sum formulas is C3/3!. This means that
when C < 1073, the sum formulas have a relative accuracy of 0.167 X 10713 which is
slightly more accurate than the original calculation of sin £’ and cos E' in Step 4.

When convergence takes place (C < 1078), sin £ and cos E’ are updated by the first-order
sum formulas in Step 13. The largest truncated term in the first-order sum formula is
C?/2!. This means that when C < 1078, the sum formulas have a relative accuracy of

0.5 X 1071¢, which again is more accurate than the original calculation of sin £’ and

cos E'.

Step 14: If M is positive after being reduced to the range [—m, +7], Step 15 is skipped
(sin E >0, FE<m).

Step 15: If 0 > M > —m, sin E’' is set negative, and E’ is set equal to 27 ~ £".
Step 16: The quantities £, sin E, and cos E are sequentially output in a 3 word matrix.

Step 17: The program is concluded.

3.5.2 Module Component 2, Initial Estimate
3.5.2.1 Method

As stated in the preceding section, the main purpose of the initial estimate algorithm is to provide
a starting value for the differential correction process defined in Steps 4-9 of the main program. There
is an obvious tradeoff between time and accuracy in this initial estimate algorithm. As the initial esti-
mate is made more accurate, the number of times Steps 4-9 of the main program must be executed is
reduced. There are, however, constraints on this tradeoff.

When £’ is as accurate as one part in 10°, the time-consuming sine/cosine calculation step in the
main program will be executed only once. Therefore, it is desirable to generate £ to this degree of
accuracy for most combinations of the input parameters ¢ and M. However, it would be uneconomical
to spend too much time trying to achieve a greater overall accuracy since, regardless of the accuracy
achieved, the full sine/cbsine calculation must be executed at least once in order to further refine E’
and to generate the sin £ and cos £ output.

The algorithm used by KEPLER for the initial estimate was selected only after a large number of
alternative algorithms were tested and proven to be less efficient.* The name abbreviated Newton-
Raphson is given to this algorithm because it represents a first-order Newton-Raphson correction in
truncated precision. It possesses two desirable properties: (1) it is executed in a minimal amount of
time (37 us on the IBM 360/75) and (2) for most combinations of M and e, it achieves the desired
accuracy of one part in 10°.

3.5.2.2 Initial Estimate Algorithm (Abbreviated Newton-Raphson)

The abbreviated Newton-Raphson algorithm consists of two steps.

Step A: E=M+ez, 0<M<m,

where z is a linear estimate of sin M:

z=0.75M, M<w/2;
z=0.75 (@ -M), M>n/2.

Step B: - inkE - E
p E,____E+M+esmE E

1~ecosE

*Kohout, J., and Layton, L., “GSFC Optimized Solution of Kepler’s Equation”, NASA/GSFC Document X-541-71-229, May 1971.

where sin £ and cos E are calculated from the first two terms of the Maclaurin expansions:

. x

sin x =x— —
3!
x2

cosx=1—-—.
2!

Step B involves several substeps:

(1
(2)
(3)
4
(5)
(6)

(7

Setx =E and S =1 (S = SWITCH).
Ifx>#w/2,setx=m—xand S = 2.
Ifx>nw/4,setx=n/2-xand S=-5.

Calculate sin £ =x — x3/6 and cos E = 1 —x2/2.

If S is negative, exchange sin E and cos E and set S =-S.

IfS=2,set cosE =—cosE.

=P+ M+esinE-E
1-ecosE

3.5.2.3 Relation of Component 2 to Main Program

The initial estimate function (component 2) is linearly coded as Step 3 of the main program

(component 1). Component 2 does not have a separate entry point in KEPLER.

3.5.3 Flowcharts

No flowcharts are provided for the main program or the initial estimation function since
KEPLER’s source code and source code comments directly conform to the logic outlined in Sections

3.5.1.2 and 3.5.2.2.

3.6 Restrictions and Limitations

If the input value of e is negative or greater than 0.99, no output other than error code is

generated.

3.7 Storage Tables External to KEPLER

None.

3.8 Input/Output Device Requirements

None.

3.9 Error Conditions and Recovery

T!:e error code, IERR, is examined after execution. If IERR = 1, the input value of e is out of
range, and hence no other output can be expected.

3.10 Module Design Technique

KEPLER is reentrant and, therefore, may be loaded in the system link pack area. KEPLER is
optimized for fast execution; it is several times faster than existing modules.

3.11 Test Procedures and Results

The speed and accuracy of KEPLER have been verified by the test programs given in Appen-
dixes B and C. The results of these tests are summarized in Sections 2.1 and 2.2.

4.0 SECOND-ORDER NEWTON-RAPHSON METHOD

Deutsch applies the Newton-Raphson method to the problem of solving Kepler’s equation
(Reference 1, pp. 24-25). He extends the procedure to include second-order effects, but the final
equation in the development includes an error in sign, as will be noted later.

If
J(E)=E—-M-esinkE,
then,
f(E)y=1-ecosE.
Let
AE=E, - E, .
Then,
—(E,-M-esinE,)
AE = + O[(AE)?] .
1 —e cos Eo
To obtain an expression valid to terms of order (AE)2, Deutsch proceeds as follows:
M =(E, + AE) —essin (E, + AE)
= E0 + AE — e(sin E, cos AE +sin AE cos E))
AE)?
=E, +AE-e=sinE0 I:l- ():l + AE cos E } ;
2 0
then, . <

esin £

—2—(AE)2 +(1~ecos EQ)AE +(E,—~M—esinE))=0.

Let

_ L
N
A =E0 -M-esink,,
B=1-e¢ cosEo,
esin FE
C=‘-——0
2

We have then 5
Ax“ +Bx+C=0

-B +/B? - 4AC

X = ZA
Hence,
24
AE =
-B +/B? - 44C
24

o~

 —B+(B-24C/B)

Following Deutsch, we adopt the minus sign as the appropriate choice in the denominator;

E0 -M-e sian0

AF = e : ,
—(1-e cosE0)+(l/2)(E0 —M—esin EO)e sinEO(l —-e cosEO)_1
M—EO +e sinE0
AF = — ,
1~ecos Ey +(1/2)(M — Ey + e sin E)e sin E(1 —e cos Ey) ™!
A~ M—E0+esinEO

1 —elcos By ~ (1/2)(M — E + e sin Ey) sin Eg(1 —e cos Eg)™ 11
(The minus sign within the brackets in the denominator which precedes (1/2) is incorrectly given as a
plus sign in Reference 1.)

In general, for functions f(E) for which the relevant derivatives exist, we obtain from a Taylor’s

series expansion:
f(Ey)
AE = ! " 1 >
—f'(Ey) + FEf"(EI2f"(E)

where terms through (AE)2 have been included.

10

5.0 CONCLUSIONS AND RECOMMENDATIONS
5.1 Effect of KEPLER on DODS Performance

The use of KEPLER in DODS results in a relatively insignificant enhancement of that system
because, prior to the use of KEPLER, DODS was spending less than three percent of its time solving
Kepler’s equation. Therefore, even if KEPLER were one hundred times faster than KEPLR1, the
time saving would not be highly significant in DODS operation.

5.2 Effect of the DPSC Module on KEPLER

Of more significance to DODS is the concurrent development of DPSC, with ALC entry points
SINCOS, DSINX, and DCOSX and FORTRAN entry points, DPSC, DSIN, and DCOS. KEPLER uses
only the SINCOS entry point. The use of this efficient subroutine to simultaneously calculate sin E’
and cos E' accounts for about one-third of KEPLER’s enhancement of DODS. Use of ALC and the
improved mathematical model account for the other two-thirds.

5.3 Effect of DPSC on DODS

The inclusion of the DSIN and DCOS entry points in the DPSC module will enhance DODS con-
siderably more than the inclusion of KEPLER alone. Every sine and cosine calculation in DODS will
be executed more efficiently since the DSIN and DCOS entry points in DPSC will override the DSIN
and DCOS entry points in the FORTLIB module, IHCLSCN.

5.4 Recommended Use of Simultaneous Sine/Cosine Routine

The DODS formulation contains many situations in which the calculation of both the sine and co-
sine of a given angle is required. The simultaneous sine/cosine entry points (DPSC and SINCOS) in the
DPSC module are now available to DODS programmers who are optimizing DODS modules (such as
KEPLER) that call for the calculation of both sin (x) and cos (x). The FORTRAN subprogram call,

CALL DPSC (X, SC) ,
takes about onc-half as much time to execute as the separate function calls to IHCLSCN:
SC(1) = DSIN(X)
SC(2) = DCOS(X) .
(When DSIN and DCOS entry points are in the DPSC module, the time enhancement is reduced from

a factor of 2 to a factor of 1.5.)

5.5 Recommended Use of ALC Entry Points in DPSC

The ALC entry points in the DPSC module enable an ALC program to execute register-to-register
sine/cosine functions that bypass the highly indirect FORTRAN convention of passing to the function
program the address of the address of the argument in general register 1. Besides saving time (the ALC

11

functions are about seven percent faster), the ALC entry points make it possible for some calling pro-
grams to be written in reentrant code, without using the time-consuming GETMAIN macro. This is
possible since the ALC functions do not require the storage of an argument list and use only the last
eight bytes of the save area, which they can share with the calling program. KEPLER is a good exam-
ple of a second-order reentrant program sharing its save area with the SINCOS routine.

5.6 Expansion of the DPSC Module

Because of the frequency of calls to mathematical functions in DODS (and other production pro-
grams run on GSFC computers), the authors are developing a series of reentrant modules to replace
the most frequently called function subprogram modules in FORTLIB. The following function sub-
programs, called TRIGPACK, are all either completed or nearing completion:

DSQRT(X), DTAN(X), DATAN2(X,Y),
DSIN(X), DCOT(X), DASIN(X) ,
DCOS(X), DATAN(X), DACOS(X) .

The single precision counterparts of these double precision function subprograms are also nearing
completion.

Besides the standard FORTRAN entry points, these modules all contain corresponding ALC entry
points (FORTRAN name with an X suffix—DTANX, for example). The ALC entry points assume that
the argument is already in floating point register 0. (For the case of the double argument in the
DATAN2X function, the arguments are assumed to be in floating point registers O and 2.) The ALC
entry points will permit the development of a large number of reentrant second-order subroutines
since only the last eight bytes of the save area are used and the storage of an argument list is not
required as a prelude to the subroutines execution.

5.7 Element Conversion Module

In conjunction with the development of KEPLER and an optimized reentrant TRIGPACK (Sec-
tion 5.6), the authors are recoding a DODS module called ELCONO, which contains two inverse sub-
programs: one for converting position and velocity vectors to osculating Keplerian elements, and the
other for performing the reverse of this transformation. This third-order module, written in ALC,
calls on KEPLER and the ALC entry points SINCOS, DSQRTX, DSINX, DATANX, DATAN2X,
DACOSX, and DTANX in the TRIGPACK modules. It also calls on ALC entry points, VCROSSX,
VDOTX, and XDOTX in a newly developed vector package. KEPLER and the SINCOS entry in
DPSC are the heart of this newly optimized module.

12

ACKNOWLEDGMENT

Miss Anne Bomford provided invaluable computer programming support in the development of
the programs presented in this document.

Goddard Space Flight Center
National Aeronautics and Space Administration
Greenbelt, Maryland, November 4, 1971
311-80-22-02-51

REFERENCE

1. Deutsch, Ralph, “Orbital Dynamics of Space Vehicles”, Englewood Cliffs: Prentice-Hall, Inc.,
1963.

13

Appendix A*

Definitive Orbit Determination System—Model 1
{Module Performance and Design)

5, MODULE NAME: KEPLR1—-SOLUTION OF KEPLER'S EQUATION
FOR ECCENTRIC ANOMALY.
5.1 LANGUAGE
FORTRAN IV
5.2 MODULE SIZE

The source deck of KEPLR1 consists of 18 executable FORTRAN
statements and requires 820 bytes of core storage.

5.3 PURPOSE
KEPLR1 solves Kepler's equation for eccentric anomaly given mean
anomaly and eccentricity by the Myles Standish algorithm.

5.4 INTERFACE INFORMATION

5.4.1 LINKAGE DEFINITION
Linkage to this module requires the following CALL statement: CALL
KEPLR1 (MA, ECC, ERRC, E2). See Table 1 for the definition of the
calling sequence arguments.

5.4.2 INTERFACE BLOCK DIAGRAM

CONEGO NEGENO EPTRBO ELCONO DCCONO CNVRTO UNCALO

R O R A I

'

KEPLRI1

*Prepared by J. H. Seid, International Business Machines, Inc., under NASA contract NASS-10022, May 1968. The format employed in
this appendix is defined in GSFC X-544-70-324: Documentation Standards for the Definitive Orbit Determination System—Per-
formance and Design Descriptions by R. R. Hohl and Lamar Layton (August 1970).

15

Table 1. Calling Sequence Arguments

Argument Analytic Limits

Name Symbol /O Description Units Format* Min/Max Dimensions
MA M I Mean anomaly Radians LF - 1

ECC e I Eccentricity - LF 0-1 1
ERRC O Error code - LI - 1

=0, convergence

<0, no convergence

E2 E O Eccentric Radians LF - 1
anomaly

*Format Key
LF - Long Form Floating Point
LI - Long Form Integer

5.4.3 INTERFACE BLOCK DIAGRAM NARRATIVE
None

5.4.4 CALLED MODULES
None

5.4.5 CALLING MODULES

ELCONO - Elements Conversion Package

DCCONO - DC Control
CNVRTO - CONVERT Control

UNCALO - Unknown Calculation
CONEGO - CONVERT Normal Equations
NEGENO - DC Normal Equations
EPTRBO - EPHEM Tape Record Builder

5.5 FUNCTIONAL ANALYSIS
5.5.1 MODULE COMPONENT 1: Solve Kepler's equation
5.5.1.1 Method:

Given the mean anomaly, M, and the eccentricity, e, the algorithm for

16

Qi

wu

1.

1.

2

3

computing the eccentric anomaly, E, will be:

1. Set error code =0
Set limit of number of iterations, MAX = 10

2, SetE=0
If M =0, go to Step 13
If M #0, go to Step 3

3. E0= M+esinM
Set number of iterations =1
4 F=E0-(esi.nE0)—M
5. D=1.0-[ecos(Ej-0.5F)]
6. E= EO - ¥/D
7. If | E,-E | - TOL <0, go to Step 13; otherwise continue to Step 8.
8. Add 1 to number of iterations
9

If (number of iterations - MAX) < 0, continue; otherwise go to
Step 12

10. E 0° E

11, Return to Step 4

12, Set error code =4

13, Modulo E by 2 7

14, Return to calling program

The limit of iterations through Steps 4 to 11 is 10, Thus MAX =10, If
this number is exceeded, the error code is set to 4.

TOL is the tolerance at which the last significant digit of the difference
between the previous calculated eccentric anomaly and the present
calculated anomaly is allowed. TOL allows an error of = 5x10” 10
Source and Type of Inputs:

The mean anomaly, M, and the eccentricity, e, will be obtained by this
module from the calling sequence of the CALL statement which transfers
control to this function. The format of M and e will be long form
floating-point.

Destination and Type of Outputs:

Output of this module will be the eccentric anomaly, E, in long form
floating-point format. Also the error code, ERRC, in long integer
format will be returned to the calling sequence of the CALL statement

which transfers control to this function.

17

18

5.5.1.4 Component Level Flowcharts

SET
ECCENTRIC
ANOMALY=0

Y

E0= M+4e sin M

!

F=Eg-(e sin Eq)
-M

'

b=1-
(e cos (Eg-.5F))

Y

E=Eqg-F/D

RETURN)‘—
13

SET ERROR
CODE=4

IEq-El-TOL
<0
?

10

5.5.1.5

5.7

5.8

Component Level Flowchart Description

1A - Values for mean anomaly, M, and eccentricity, e, are transferred
to the module via the calling sequence. The eccentric anomaly, E,
and the error code, ERRC, are returned via the calling sequence.

1B - The counter for the number of iterations is set to 1,

1C - Test to see if mean anomaly is equal to zero.

1D - Sets the eccentric anomaly, E, equal to zero when the mean
anomaly, M, is equal to zero and returns to calling module.

1E - Computes the initial eccentric anomaly, EO.

1F - Computes the expression E0 - (e sin EO) - M using the initial
computed value of E.

1G - Computes the expression 1.0 - [e cos (Eqy - 0.5F)] using the initial
computed value of E0 and F computed in 1F,

1H - Computes a more accurate value for eccentric anomaly,

E = EO - F/D.

1I - Test to see if eccentric anomaly has been determined. If the value
of the expression |E;-E [- TOL is equal to or less than zero, E
has been determined. If E has been determined control is returned
to the calling module.

1J - Increase number of iterations by 1 when eccentric anomaly has
not been determined.

1K - Test to see if number of iterations is less than or equal to the
maximum number of iterations allowed.

1L - If the number of iterations exceeds the maximum, set error code
equal to 4. Return control to calling module.

1M - If the number of iterations meets the test, make the initial
eccentric anomaly, EO’ equal to the computed eccentric anomaly,
E, and return to 1F,

RESTRICTIONS AND LIMITATIONS

None
STORAGE TABLES EXTERNAL TO MODULE

None
INPUT/OUTPUT DEVICE REQUIREMENTS

None

19

5.

9

5.10
5.10.1

.10.2

.10.3

.10.4

5.11
5.11.1

20

ERROR CONDITIONS AND RECOVERY
Check to see that number of iterations does not exceed the maximum .

If so, set error code, ERRC =4,

MODULE DESIGN TECHNIQUE

MODULARITY REQUIREMENT

None

EXPANDABILITY REQUIREMENT

None

PARAMETERIZATION

The maximum number of iterations to determine the eccentric

anomaly was set equal to 10,

SPECIAL FEATURES

None

TESTING PROCEDURES AND RESULTS

UNIT TEST DRIVER DESIGN AND IMPLEMENTATION

Test 1 - Input data-eccentricity and mean anomaly are read from data
cards, subroutine KEPLR1 is executed and the results are printed.
Test 2 - The eccentricity is varied from 0 to 1 by increments of .05 for
all values of eccentric anomaly from 0 to 360 degrees, incremented by
15 degrees in order to compute values of mean anomaly. Subroutine
KEPLRI1 is called for all values of mean anomaly and corresponding
eccentricity, and the results are printed out.

5.11.1.1 Unit Test Driver Flowchart

" 2A
WRITE HEAD-

ING INPUT
QUTPUT

PARAMS

28

CONVERSION

FACTOR FOR

DEGREES TO
RADIANS

CONVERT
M
TO RADIANS

2E
COMPUTE
E FROM
KEPLR 1

2F

CONVERT
E
TO DEGREES

'

CONVERT
COMPUTED E
TO DEGREES

21

WRITE M, e, E
(INPUT), E
COMPUTED

HAS

ALL DATA
BEEN
E

RETURN

22

START

INITIALIZE
ECCENTRIC
ANOMALY, E

CONVERT
E

TO RADIANS

[RY W
I ot ® x $

!

COMPUTE MEAN
ANOMALY,
M=E-e sin E

3D

COMPUTE E
FROM
KEPLRI

3E

3F

CONVERT

TO DEGREES

M and BOTH E'S

COMPUTE DIF-
FERENCE IN
ECCENTRIC
IANOMALY VALUES

WRITE M,
BOTH E’S
AND DIF-
FERENCE

INCREMENT
EBY 15
DEGREES

INCREMENT
e BY .05

4A

4B

4F

5.11.2

5.11.3

.12

[}

Program
Symbol

El
ITER
MAX

TOL

BENCHMARK TESTING

None

TEST RESULTS AND ACCURACY

This item is not covered at the module level; it is included in the system

. %*
evaluation document.

GLOSSARY

A glossary of internal symbols associated with quantities having analytic

significance is given in Table 2.
REFERENCES

Memorandum from I. Cole to IBM; 1 August 1967

Analytic
Symbol

ITER

MAX

TOL

*Working document in use at GSFC.

Table 2, Internal Symbols

Description of Term

Eccentricity anomaly
Compare value

Number of iterations
Completed

Limit of number of
iterations

Tolerance for
convergence

Units

Radians

Format

LF

LI

LI

LF

Limits

Min/ Max

23

Appendix B

Test 1 and Results

c TEST 1
c TEST PROGRAM TO TIME TWO KEPLER PROGRAMS
c PROGRAMMER ANNE BOMFORD

REAL*8 M,E,EA(3),DE
500 FORMAT('1'+// 349X, '"EXECUTION TIMES FOR KEPLER AND KEPLR1'y»//)
HWRITE(6,500)
E=.1D-03
ITIME =2
CALL INTIMO(1)
DO 3 1=1,20
M=,1D-02
D0 2 J=1,200
DD 1 K=1,100
CALL KEPLER(M,E,IRR4EA)}
M=M+6.28D-02
E=E+,49D0-01
CALL INTIMO(ITIME)
ITIME=ITIME/400000
506 FORMAT(//+30X, *AVERAGE EXECUTION TIME FOR KEPLER ON 360/95',1X,13,
11Xy "MICROSECONDS ")
WRITE(6,4506) ITIME
=41D-03
ITIME=2
CALL INTIMO(1)
DO 6 I=1v?0
M=.1D-02
00O 5 J=1,200
DO 4 K=1,100
CALL KEPLR1(M,E4IRRyE2)
M=M+ 6.28D-02
E=E+ .49D-01
CALL INTIMO(ITIME)
ITIME=ITIME/400000
507 FORMAT(//+30X,'AVERAGE EXECUTION TIME FOR KEPELR1 ON 360/95°',1X,13,
11X, '"MICROSECONDS®)
508 WRITE(6,507) ITIME
E=.1D-03
ITIME =2
CALL INTIMO(1)
DO 10 I=1,20
=.1D-02
D0 11 J4=1,200
DO 12 K=1,100
CALL KEPLR1I(M,E,IRR,E2)
EAL2)=DSIN(E2)
12 EA{3)=DCOS(E2)
11 M=M+6.28D0-02
10 E=E+.49D-01
CALL INTIMO(ITIME)
ITIME=ITIME/400000
607 FORMAT(//430X, "AVERAGE EXECUTION TIME FOR KEPLR1 ON 360/95',1X,I13,
11X,*MICROSECONDS(WITH SINCOS)*)
WRITE(6,607) ITIME
RETURN
END

e e ok kR A A oo 3 o ok o e e e o o ok e oK oK ke ek % R o o o ek A K o o ok ok oo 3k ook ok ok ook sk ko ok e o ok e e e okl ook

e e e o ool o ok e e ot o e 3 o okt e ok ok e o ok e e ok ook ok o o sk ol e e ot Aok e X ok ook e e o o ol oo ok e o e o e ek ook sk ot e e ek ek
EXECUTION TIMES FOR KEPLER AND KEPLR1

AVERAGE EXECUTION TIME FOR KEPLER ON 360/95 74 MICROSECONDS

(WITH SINCOS)AVERAGE EXECUTION TIME FOR KEPLR1 ON 360/95 314 MICROSECONDS

{WITHOUT SINCOS)AVERAGE EXECUTION TIME FOR KEPLR1 ON 360/95 266 MICROSECONDS

ok e o ok RS o o ke s o oK okt e e s okl s o 0 o ok ek o o okt o ok o sk e o o oK ko ok ok sk ok ok oK e ek o e sk ok

e 30 3 ek et ok oo S s o Aot ok oo sk ok stk o sk ek st s sk skl ok sk Kt e 3 ko o ook e ok e st ok skl oo ok ot o o e sk e

WN =

o

-
=

25

Appendix C

Test 2 and Results

Cc TEST 2
C TEST PROGRAM TO TEST VALIDITY OF TWO KEPLER PROGRAMS
C PROGRAMMER ANNE BOMFORD

REAL#*8 M,FE,EA(3),DE
REAL*8 AyBjsERRyMAXERR
REAL*8 E2
800 FORMAT('1',//+49X,y*VALIDITY TEST FOR KEPLER AND KEPLR1'e//)
WRITE(6,4800)
DO 501 K=1,42
MAXERR=0.0D00
E=.1D-03
DO 802 I=1,100
=.10-02
DO 803 J=1,1000
IF{IK.EQWs2) GO TO 505
CALL KEPLER(M,yEsIRR,EA)
ERR=DABS(EA(1)~-M-E*EA(2))
IF(ERR.LE.MAXERR) GO TO 803
MAXERR=ERR
A=M
B=E
GO TO 803
505 CALL KEPLR1(MyEsIRR,E2)
EA{1)=E2
EA(2)=DSIN{E2)
ERR=DABS(EA(1)-M—-E*EA(2))
IF{ERR.LE.MAXERR) GO TO 803
MAXERR=ERR
A=M
B=E
803 M=M+.6280-02
802 E=E+.980D-02
IF{K.EQ.2) GO TO 808
806 FORMAT(// 20Xy "MAXIMUM ERROR FOR KEPLER=',D10.3," M=*,E10.3," E=
1'yE10.3)
WRITE(6,806) MAXERR,A,B
GO TO 501
807 FORMAT(//,20X, *MAXIMUM ERROR FOR KEPLR1=',010.3," M=1',E10.3," E=
1'yE10.3)
808 WRITE(64807) MAXERR,A,B
501 CONTINUE
RETURN
END

e ek e o sk ok 3t o e e ak oe o o oo ol o ol ool ol ok ok o K s sk e el oo o o o oK stk ok ok e e oKtk ok o e e o ek ok ok ek
ot e oo e o e o o st o o o e oo o Xk el o ok e ok s ook o ook Kol ok ek e e ook ok e ok ok e X ok R ok ek K Rk
VALIDITY TEST FOR KEPLER AND KEPLR1
MAXIMUM ERROR FOR KEPLER= 0.444D-15 M= 0.,520D 01 E= 0.951D 00

MAXIMUM ERROR FOR KEPLR1= 0.500D-15 M= 0.264D 01 E= 0.941D 00
S s e s s ol oo o ok ko o ok s ook o o sk e o sk e o o ok e o e ook o ol ok okl ok ek ok ool ok o ook ok ok ok e ok ok sk ok ok

e skl o oo 30 o o 0o o e o 0o o ok e i ot o ko o 3 o ol o et oK o o ok kol o ek oK K K ek 3 K ok A A o e o K ek

27

OO0

»H

[gN--R N e

10

12

KEPLER

ERROR

Appendix D

KEPLR1 and KEPLER Source Code

SUBROUTINE KEPLRI{(MAJECC,ERRC,E2)

THIS SUBROUTINE IS USED TO SOLVE KEPLER'S EQUATION
FOR ECCENTRIC ANOMALY GIVEN MEAN ANOMALY AND ECCENTRICITY
BY THE MYLES STANDISH ALGORITHM,
IN THE CALLING SEQUENCE MA IS THE MEAN ANOMALY, ECC IS
THE ECCENTRICITY, ERRC IS THE ERROR CODE FOR NUMBER OF
ITERATIONS AND ER IS THE ECCENTRIC ANOMALY.
INTEGER ERRCyMAX,ITERJEC
DOUBLE PRECISION MA,ECC»El,E2+FsDyABS
REAL*8 TOL/.05D-10/,P12/6.283185307179586/
MAX=10
ERRC=0
£E2=0.0D0
IF(MA) 3,13,3
E1=MA+ECC*DSIN(MA)
ITER=1
F=E1-(ECC*DSIN(E1l })~MA
D=1.,0D0-(ECC*DCOS(E1~-0.5D0%F))
E2=E1-F/D
TEST FOR CONVERGENCE
IF(DABS(E1-E2)-TOL) 13,13,8
ITER=ITER + 1
TEST FOR NUMBER OF ITERATIONS
IF{ITER-MAX) 104+10,12
El1=E2
GO 70 4
ERRC=4

13 E2=DMOD{(E2,P12)

IF(E2.LT.0) E2=PI2+E2

RETURN

END

CSECT

USING *,415

STM l4944+12(13) SAVE REGISTERS

LM 1+94,0(1) ARGUMENT ADDRESSES M,ESIERR,EA
STEP ONE

LD 2,0€2) E

LTDR 242 TEST E FOR MINUS

BM ERROR

CE 2¢=E'.99? TEST E FOR SIZE

BL %412 OK IF LESS THAN .99

MVI 3(3),1 * SET ERROR CODE =1

8 EXIT ¥ AND EXIT

MV 3(3),0 ZERD ERROR CODE (NO ERROR)

29

*

*

QUAD1

oCcT1

30

STEP TWO

LD 4,0(1) M HOLD FOR SIGN

LPDR 044 M ABSOLUTE

cD Oy TWOPI OK IF LESS THAN 2PI1

BL *4+20 *

LDR 640 * OTHERWISE

DD 64, THOPI * REDUCE M

AW 64ZERO14 * TO MODULO 2P1

MD 69 TWOPI *

SDR 0+6 *

cb 0,4sPI *

BL *+12 % IF X GREATER THAN PI

LCDR 4,4 *¥* AND REVERSE SIGN

LCDR 0,0 * AND SET X = 2PI-X

AD 04+sTWOPI *

STE 4452(13) SIGN OF M SAVED

STD 0+56(13) M ABSOLUTE BETWEEN O AND PI
STEP THREE-A

CE Q09=E'1.,57" =

BL *+10 *

LCDR 0,0 * QUICK AND DIRTY SIN(M)

AD OyP1I *

HDR 0,0 * =(3/4)X X= M M BETWEEN 0-P1/2

HDR 440 * DR X= PI-M M BETWEEN PI/2-PI

ADR 0+4 *

MER 0,2 E%®SIN(E)

AD 04+56(13) EA = M + EXSIN(M), 1ST ESTIMATE

STD 0,0(4) HOLD AS EA (POSITIVE)
STEP THREE-B

LA Os1 S=1 (ASSUMES EA IN QUAD1)

CE 09=E'1.5707963"

BL QUAD1 OK 1ST QUADRANT

LA 042 OTHERWISE SET S=2 %

LCDR 0,0 AND %*

AD 0PI EA= PI-EA *¥* EA LESS THAN PI/2

CE Oy=E',.,7853981"

BL 0OCcT1 OK 1ST OCTANT

LCR 0,0 *¥ OTHERWISE SET S - *

LCDR 0,40 * AND *

AE O9y=E'"1.5707963* =* EA = PI1/2 -EA * EA LESS P1/4

LCDR 2,0 -X

HDR 440 X/2

MER 234 -X2/2

MER G42 -X3/4

ME 4 4=E? 6666667 ~X3/6

AD 2y0ONEX 1-X2/2 = COS(EA)

ADR 044 X=-X3/6 = SIN(EA)

LTR 0,0 TEST S FOR + OR -

BP *+12 0K 1ST OCTANT

LCR 0,0 * OTHERWISE SET S =+1 0OR +2

LDR 442 * AND

LDR 2+0 * EXCHANGE

LDR 04 % SIN(EA) AND COS(EA)

BCT 09 ¥*4+6 * =COS(EA) - INQUAD 1

LCDR 2,2 * —-COS(EA) + IN QUAD 2

ME 0,0(2) E*SIN(EA)
ME 2+0(2) -E*COS(EA)
AD 2+0NEX 1-E*COS(EA) =D 1ST ORDER
AD 01+56(13) M+E*SIN(EA)
SD 0,0(4) M+E*SIN(EA) ~-EA =F
DER 042 F/0 =C 1ST ORDER
AD 0,0(4) EA+C
STD 0,0(4) STORE AS EA ESTIMATE (POSITIVE)
* STEP FOUR
L 159=V(SINCOS)
BALR 14,15
USING *,4 14
* STEP FIVE
ITERATE STD 0+81(4) SIN(EA)
MD 0,0(2) E*SIN(EA)
HDR 440 «SHEXSIN(EA) HOLD
AD 0+56(13) M+EXSIN(EA)
SD 0.+,0(4) M+E*SIN(EA) -EA =F
* STEP SIX
LCDR 6,2 ~-COS({EA)
MD 6,01(2) -E*COS(EA)
AD 6 9 ONEX 1-E*COS(EA) =D 1ST ORDER
* STEP SEVEN
MER 4490 Fx.5%E*SIN(EA)
DER 4496 F*.5%E*SIN(EA)/D
ADR 6+4 D +F*,5%E*SIN(EA)/D = D 2ND ORDER
* STEP EIGHT
DDR 046 F/D = C 2ND ORDER
LDR 440 SAVE C
* STEP NINE
AD 0,0(4) EA+C
STD 0,0(4) SAVE AS ENHANCED EA
* STEP TEN
LPER 644 C ABSOLUTE
CE 69=E'1.E-5" * RETURN FOR FULL SINCOS AND ITERATE
BCR 2915 * IF C GREATER THAN .00001
* STEP ELEVEN
CE 64=E'1.E-8" * CONVERGENCE
BL ouT * WHERE C LESS THAN .00000001
* STEP TWELVE
LCDR 0.4 -C 2ND ORDER SUMS FORMULAE
HDR 654 cs2 C BETWEEN 10%*-5,10%%-8
MDR 0,6 -C*C/2
AD 0 yONEX 1-C*C/2 = COS(C)
LDR 6+4 C = SIN(C)
MDR 642 SIN(C)*COS(EA)
MDR 2+0 COS(C)*COS(EA)
MD 4+981(4) SIN(C)}*SIN(EA)
MD 0,8(4) COS(C)*SIN(EA)
ADR 046 SIN(EA+C)=SIN(C)*COS(EA)+COS (C)*SIN(EA)
SDR 2¢4 COS(EA+C)=COS(C)*COS(EA)-SIN(CI*SINIEA)
BR 14 ITERATE
* STEP THIRTEEN
ouT LDR 0+4 c 1ST ORDER SUMS FORMULAE *
MDR 0,2 C*COS(EA) C LESS THAN 10**-8 *

’

3 # 3 3 36 3 3¢ 3t 3 i 3%

*
PLUS

%
EXIT

TWOPI
PI
ZERO14
ONEX

INTIMO

INTERV

INTER
TWSIX

32

AD 0,8(4) SIN(EA+C)
MD 448(4) C*SIN(EA)
SDR 2+4 COS(EA+C)

STEP FOURTEEN

™ 52{13),128
BZ PLUS
STEP FIFTEEN
LCDR 0,0 OTHERWISE
LD 4 9 THOPI * AND
SD 440(4) * SET
STD 440(4) * EA =
STEP SIXTEEN
STD 0.+8(4)
STD 2+16(4)

STEP SEVENTEEN

SIN(EA) +C*COS(EA)

* #*

COS(EA) —C*SIN(EA)

CHECK SIGN OF M
OK IF M POSITIVE

COMPLIMENT SIN(EA)

2P1-EA

OUTPUT SIN(EA)
OUTPUT COS(EA)

LM 1494412 (13) RESTORE REGISTERS
BR 14 AND RETURN
DC D'6.2831853071795864"* 2P1
DC Xv413243F6A8885A31" PI
DC X¥4E00000000000000"
DC X '4OFFFFFFFFFFFEFF Y
END =gt ,99°!
=E'] .57
=EY1,5707963?
=E.7853981"!
=EY 6666667!
=V{SINCOS)
=E'1.E-5"
=E']1 .E-8"*
START O
BC 15,12(15) BRANCH AROQUND CONSTANTS
DC X' ye ESTABLISH A HALF~-WORD BOUNDARY
DC CLT7*' INTIMO?® NAME
STM 14412,12(13) SAVE THE REGISTERS
BALR 12,0 BASE REGISTER
USING *,12
LR 3s1
L T90(3)
CLI 3(T) X020 CHECK THE INDICATOR
B8C 8 y INTERYV BRANCH IF SECOND ENTRY

STIMER TASKsTUINTVL=INTER

LM 14412,412(13)
MV1 12(13)4X'FF?
BCR 15914

L 59, INTER
TTIMER

SR 540

M 49TWSIX

ST 50(7)

LM 14912412(13)
MVI 12(13) 4+ X'FF?*
BCR 15414

DS OF

bC F'2147483647"
DC Ft26°

END

SET THE TIMER

RESTORE THE RGGISTERS
INDICATE CONTROL RETURNEC
RETURN TO CALLING PROGRAM
LOAD MAXIMUM TIME

DETERMINE ELAPSED TIME

CONVERT UNITS TO MICRO SECONDS
STORE TIME IN RETURN LOCATION
RESTORE REGI STERS

INDICATE CONRROL RFTURNED
RETURN TO CALLING PROGRAM

DPSC

SINCOS

CSECT

USING *,415

STM 14924+12(13)
LM 1+2,0(1)

LD 0,0(1)

LA 154,SINCOS

BALR 14,415
STD 0+,0(2)
STD 2+8(2)

SAVE REGS

X9+ SC ADDRESSES

X TO FRO

SINCOS ADD

SIN TO FRO, COS TO FRO
OUTPUT SIN(X)

OUTPUT COS(X)

LM 1492412(13) RESTORE REGS

BR 14 AND RETURN

ENTRY SINCOS

USING *,15

LDR 6450 SIGN OF SIN(A)

LPDR 0,0 X ABSOLUTE

(o)) 0+ THWOPI *

BL *+20 * IF X GREATER THAN 2PI

LDR 2+0 * REDUCE

oD 2+TWOPI * TO

AW 2+ZERO14 * MODULD

MD 2:TWOPI * TwoPI

SDR 02 *

cD OsP1 *

BL *+12 * IF X GREATER THAN PI

LCDR 646 % REVERSE SIGN OF SINE

LCDR 0,40 * AND SET X = 2PI-X

AD Oy TWOPI %

LA 0,2 SET SWITCH = 2 (COS +y NO SIN/COS EXCHANGE)
cb 0+PIOVER2 *

BL *+ 14 ¥ If X GREATER THAN PI/2

LA 0s1 ¥ SET X =PI-X

LCDR 0,0 * AND SET SWITCH =1 (C0OS =)

AD 0,sP1 *

cD 0 +PIOVERS * IF X GREATER THAN PI/4

BL *+16 * SET X = PI1/4 +PI/4 -X

LCR 040 ¥ AND SET SWITCH - (SIN/COS EXCHANGE)
LCDR 0490 *

AD 0 yPIOVERS4 *

AD 0+PIOVER4 *

LER 2+0

AU 2y=X'45000000* 4500000X 1ST HEX DIGIT OF X =INDEX
STE 2+68(13)

L 1,68(13) 45000001

SLL 143 81 =CONSTANT INDEX I=031925eee9l2
LDR 2+0 X TO FRZ2 AND FRO

MDR 292 XX =X2

LDR 492 X2

MD 449S5(1)

AD 49S4(1)

MDR 4492

AD 44S3(1)

MDR 442

AD 4952(1)

MDR 442

AD 4951(1)

MDR 0+4 SIN(X) VIA 9TH DEGREE ODD POLYNOMIAL

33

bCcos

DCOSX

DSIN

DS INX

34

LDR

BL
MD

MDR
MD

MDR
AD
MDR
AD
MDR
AD
LTR
BP
LCR
LDR
LDR
LDR
BCT
LCDR
LTDR
BCR
LCDR
BR
USING
ENTRY

LD
LNDR
AD

LA

BR
USING
LNDR

AD
LA

ENTRY

LD
LA
USING
LDR
LPDR
cD
BL
LDOR
DD
AW
MD

442
449=E'.25"?
*+18
29C6-64(1)
2:C5(1)
24

*+8
24+C51(1)
2+:C4(1)
24
29C3(1)
2v4
2+C2(1)
294
2+C1(1)
040
*+12
0,0
442
2+0
O¢4

0 ¢ %46
2¢2
6496
10414
0,0

14

*4915

DCOS yDCOSX
1,0(1)
0.0(1)
0+0
0yPIOVER4,
0 oPIOVER4
154 DSINX
15

*915

0,0
OyPIOVER4
0 +PIOVER4
159 DS INX
15
DSIN, DS INX
1,0(1)
0,0(1)
15,12(15)
*915

64,0

0,0
0,TWOPI
*4+20

240

2+ THOPI
2+2ERD14
29 TWOPI

X2
X2 VS 1/4
8TH DEGREE COS IF X LESS THAN 1/2

10TH DEGREE COS IF X GREATER THAN 1/2

COSi{XY VIA 8 OR 10 DEGREE POLYNOMIAL
TEST SWITCH FOR SIGN
NO EXCHANGE IF +
OTHERWI SE SET SWITCH +1 OR +2
AND
EXCHANGE
SIN AND COS
* IF SWITCH = 1
* SET COSINE -
* IF SIGN OF SIN +
* EXIT
OTHERWISE SET SIGN -
AND EXIT

COossS

SDR

BL
LCDR
SD
()]
BL
LCOR
AD
co
BNL
LER
AU
STE

StL
LDR
MDR
LDR
MD
AD
MDR
AD
MDR
AD
MDR
AD
MDR
LTDR
BCR
LCDR
BR
LCDR
AD
AD
LER
AU
STE

SLt
MDR
LDR
CE
BL
MD

MDR

MD
AD
MDR
AD
MDR
AD
MDR

042

0,P1

*+10

646

0,P1
0,PIQVER2
*410

0,0

0,P1

0sP IOVER4
CcO0sSSs

2+0
2+=X'45000000"
2¢68(13)
1,68(13)
1,3

240

292

4492
44S5(1)
4454(1)
442
44953(1)
442
4452(1)
G4e2
44S1(1)
Os4

646

10414
040

14

0+0
OyPIOVER4
0,PIOVERS
2,0
2+=X'45000000°"
2+68(13)
1,68(13)
1,3

0,0

250
29=E'.25"
*+18
04C6-64(1)
0,C5(1)
0,2

x4+ 8
0,+C5(1)
0,C4(1)
042
0sC31(1)
042
0,C2(1)
0,42

35

ZERO14
TWOPI
Pl
PIOVER2

PIDVER4
*

S1

S2

S3

S4

36

AD
LTDR
BCR
LCDR
BR
DS
DC

DC
ocC
DC
SINE
bC
DC
DC
DC
bcC
DC
DC
DC
DC
bC
bC
DC
bcC
DcC
(3]
DC

bDC
DC

oC
DC

bc
DC
pC
bC
DC
DC
DC
pC
bcC
DC
DC

oC
DC

DC
DC
319
0C
bC

0,Cl(1)

646

10914
0,0

14

oD
X'4E00000000000000*

D®6.2831853071795864!

X'413243F6A8885A31"
X'411921FB54442D18"
X'40C90FDAA22168C2"
COEFFICIENTS

X' 40FFFFFFFFFFFFFAY
X V4OFFFFFFFFFFFF371
X' 40FFFFFFFFFFFDTC!
X *40FFFFFFFFFFESDS "
X'40FFFFFFFFFFC6A?
X '40FFFFFFFFFF49BA!
X' 40FFFFFFFFFCFB23"
X *4OFFFFFFFFFOL1C57!
X*'40FFFFFFFFCC5C90"
X '40FFFFFFFF6D8C98!
X140FFFFFFFE63DA15 "
X '40FFFFFFFCLEBC81"
X' 40FFFFFFF85A9960"
X 'CO2AAAAAAAAATL3F!
X'CO2AAAAAAAA931F5
X 'CO2AAAAAAAABFD2T!
X'CO2AAAAAAAA2 D215
X 'CO2AAAAAAAIE6 858!
X*CO2AAAAAAABC DDDA"®
X *COZAAAAAAA4CBBAT®
X'CO2AAAAAAS4TFAS2®
X 'CO2AAAAAATLE 4DEB®
X'CO2AAAAAA2826B13"
X 'CO2AAAAA98025048"
X'CO2AAAAAB4FD1T8E
X *CO2AAAAA69F 04198
X*3F222221FB15B5CF !
X"3F22222212475F04"
X'3F2222221B88AD9A"
X *3F2222221225BEF1*
X'3F2222221106E925"
X '3F22222 203229637
X*'3F222221D93FF490"
X *3F22222 15CBB1C5D!
XV3F222220934E1941"
X 13F2222 1F3AT05D7F !
X13F22221CBB99O4EF
X'3F222218FE373168"
XV3F2222146F331054"
X *BDCFBE6DAB3 3F92D!
X*BDD0O08956DAAEA4B !
X 'BDDOOC4AC2C8225A"
X'BDDOOC15380ED130"

2Pl

PI
PI/2

0.0

0.6250000000D~01
0.1250000000D 00O
0.1875000000D0 00
0.2500000000D 00
0.3125000000D 0O
0.3750000000D0 00
0.4375000000D 00
0.5000000000D 00
0.5625000000D0 00
0.6250000000D 00
0.6875000000D 00
0.7500000000D 00
0.0

0.62500000000-01
0.1250000000D 00
0.1875000000D 00
0.2500000000D0 00
0.3125000000D0 00
0.3750000000D0 00
0.43750000000 00
0.5000000000D0 0O
0.5625000000D 00
0.6250000000D0 00
0.6875000000D 00
0.7500000000D0 OO
0.0

0.62500000000-01
0.1250000000D0 00
0.1875000000D 00
0.2500000000D 00
0.3125000000D0 00
0.3750000000D0 00
0.4375000000D0 00
0.5000000000D 00
0.5625000000D 00
0.62500000000 00
0.6875000000D0 00
0.7500000000D 00
0.0

0.6250000000D0-01
0.1250000000D0 00
0.18750000000 00

S5

c2

Cc3

pC X *BDDO0C4960797744"

DC X*BDDOOCO081D853F 7"
DC X *BDDOOB3D87649F4 4"
DC X'BDD0099428EEBB20"
DC X *BDDOO7BE59C8C04"
DC X*BDDOO4BB8BF 3436D '
oC X *BDDO00816BFF2313"
DC X*BDCFFB44C616AT14"
DC X *BDC=FS5CCED99F6BD*
DC X*BD27ABC0O01980975°
DC X '3C274020A16A8780"
DC X*3C2DC 3E3A8A96C91 "
DC X *3C2DE2C5F202B5DE *
DC X*3C2E01B434E997D5"
DC X *3C2DF9F7766C5869"
oC X'3C2DE4A5BCO81B71*
DC X *3C2DC260BE20B1AB"
DC X*3C2DA291A6506887"
DC X Y3C2D7F6C 3453E649"
DC X*3C2D545C68C1566F *
DC X *3C2D284AE4CA5DCB*
DC X*3C2DO0E6FTD092D6
COSINE COEFFICIENTS
DC X*4110000000000000*
DC X '411 0000000000000
DC X'4110000000000010*
DC X '4OFFFFFFFFFFF6B5®
DC X*40FFFFFFFFFFO2CC
DC X *4OFFFFFFFFFID8BO"
DC X'4OFFFFFFFFDB4BF 3"
DC X '4OFFFFFFFF66CA3C!
DC X'4OFFFFFFFFBFB694 "
DC X 1411 000000002779F
DC X'411000000000C48 4"
oC X '4OFFFFFFFFFOACD4!
DC X'40FFFFFFFF328278"
DC X *C0800000000008FC*
DC X*C080000000001F56°*
DC X *C08000000000A56E *
DC X'COTFFFFFFFFB422C"
DC X'CO7FFFFFFFC18410"
DC X*COTFFFFFFEF2E9A8*
DC X 'CO7TFFFFFFBAOO34 A"
DC X'COTFFFFFF24D4282 "
DC X*COTFFFFFFBTC7615"
DC X*'C080000002240B38 "
DC X *C0800000006D 49C3"
DC X'COTFFFFFFFLAS797"
DC X '*COTFFFFFF88B5A64
DC X' 3FAAAAAAACFADI1B
DC X *3FAAAAAAABB4F60A!
DC X' 3FAAAAAAACSF2FES
DC X *3FAAAAAA9BDS24DF *
DC X*3FAAAAAA4BTFIF90"
DC X *3FAAAAA985BO6FCA®

0.2500000000D 0O
0.3125000000D0 00
0.3750000000D 00
0.4375000000D0 00
2.5000000000D0 00
0.5625000000D0 0O
0.6250000000D0 00
0.68750000000 00
0.7500000000D OO
0.0

0.6250000000D0-01
0.1250000000D 00
0.1875000000D 00
0.2500000000D0 0O
0.3125000000D 00
0.3750000000D 00
0.4375000000D OO
0.5000000000D 0O
0.5625000000D0 00
0.6250000000D 00
0.6875000000D 00
0.75000000000 00

0.0

0.62500000000-01
0.1250000000D 00
0.18750000000 0O
0.2500000000D 00
0.31250000000 0O
0.3750000000D0 0O
0.4375000000D0 00
0.5000000000D 00
0.5625000000D0 00
0.6250000000D 00
0.68750000000 00
0.7500000000D 0O
0.0

0.6250000000D0-01
0.1250000000D 0O
0.1875000000D 0O
0.25000000000 00
0.3125000000D0 00
0.3750000000D 0O
0.4375000000D0 00
0.5000000000D 00
0.5625000000D OO
0.6250000000D0 00
0.6875000000D 00O
0.7500000000D 00
0.0

0.6250000000D0-01
0.1250000000D 00
0.1875000000D0 00
0.2500000000D0 00
0.3125000000D0 00

37

c4

Cc5

cé6

38

X*3FAAAAATS56C2D236"
X'3FAAAAAZ2DBSEOD52B®
XY3FAAAAAB8A34ELIB3E"
X *3FAAAAAB66SQESTD!
X*3FAAAAAABBBF861 4"
X *3FAAAAAAS544824F)
X*3FAAAAABELC60818B!
X *BESB OSES544ACFAED!
X*BESBO5B3A3D232D3?
X'BESB 05813C6708D8?*
X*BESBO59A0ECCDD46"
XYBES5B0O563A45C8E91"
X*BE5B0511816DOF42"
X 'BESB 046D420BOFOB?
X*BE5B0375D64CO8AC®
X "BESB053B6D350E39"
X'BESBOSCF9CELEFAS?
X *BESBOS5AF4705E015"
X*BES5B0O59FF6063D5B"
X'BESBOS576C215745A"
X*3D1B83EAOF58T760F*
X *3D1A0381E55BED90O!
X'3D19FD902FF6AO01A?"
X*3D19F15D857FB484!*
X'3D19E3CB6BO16FAL"
X '3D19D6B96D105CAD!
X*3D19C48042D 34407
X*3D19BO76C277FEB3?
X'3D19F45FAA3F5386"
X '3D1 A040A69823422"
X*3D1A0107B2439€E18"
X '3D19FFES547902218"
X*'3D19FD9ACB8121EB!?
X*BB4010A69645256D"
X*BB4ABF0291131076"
X 'BB48F9D4FCHACHS52?
X'BB487121A5139E61"*
X 'BB479FD89AAO19C2"

=X'45000000"
=EY,25?

0.3750000000D0 0O
0«4375000000D0 00
0.5000000000D0 0O
0.5625000000D0 00
0.6250000000D 00
0.6875000000D0 00
0.7500000000D0 00
0.0

0.6250000000D-01
0.1250000000D 00
0.1875000000D 00
0.2500000000D0 00
0.3125000000D 00
0.37500000000 00
0.4375000000D0 0O
0.5000000000D OO
0.56250000000 00
0.6250000000D 00
0.6875000000D 00
0.7500000000D0 0O
0.0

0.62500000000-01
0.1250000000D 00
0.1875000000D0 00
0.2500000000D0 00
0.3125000000D0 00
0.3750000000D 00
0.4375000000D 00
0.5000000000D 00
0.5625000000D0 00
0.6250000000D 00
0.68750000000 00
0.7500000000D0 00
0.5000000000D0 00
0.56250000000 00
0.6250000000D0 00
0.6875000000D 00
0.7500000000D 00

NASA-Langley, 1972 —— 8

